

<u>Voca</u>	<u>bulary</u>			12/14/20
	Content:	Start	End	
	momentum			
	single object			
	system of objects			

	<u>Learning Objectives</u>	12/2	14/2017
	Grade 7		
	Content:	Start	End
	Define and identify conserved quantities.		
	Define and identify isolated systems.		
	State the Conservation of Momentum.		
	Apply Conservation of Momentum to analyse one dimension, multiple object scenarios: Calculate momentum, velocity, mass.		
	Identify and discuss qualifications for elastic and inelastic collisions.		
	Apply Conservation of Momentum to collisions to derive collisions equations.		
	Calculate velocity of an object after an elastic or inelastic collision (2 objects only).		
			6

<u>Learning Objectives</u>	12/14/2017	
Grade 8		
Content:	Start	End
Define momentum mathematically and calculate it for a single object, or a system of objects.		
Compare the momenta of two objects.		
Calculate a change in momentum of a single object or of a system of objects.		
Apply conservation of momentum to any closed system.		
Distinguish between an elastic and inelastic collision (bounce or stick).		
Mathematically analyse a 2 object collision of either type.		
Note: all momentum calculations will be along a si	ngle axis	5. 7

Closed / Isolated System of objects

 An isolated system is a system that is free from the influence of a net external force that alters the momentum of the system.

- Usually meaning that we ignore friction and gravity.
 - Because of the inevitability of friction, air resistance and gravity in any real collision, no system is ever completely isolated. However, the effect of friction is fairly small.

/www.physicsclassroom.com/Class/momentum/u_l2c.cfm www.physicsclassroom.com/class/momentum/Lesson-2/Using-Equations-as-a-Recipe-for-Algebraic-Problen

Plenary (Conservation of Momentum for a system of objects):

- $\frac{http://www.physicsclassroom.com/class/momentum/Lesson-z/Using-Equations-as-a-Recipe-for-Algebraic-Problem}{Algebraic-Problem}$
- http://www.physicsclassroom.com/class/momentum/Lesson-2/Using-Equations-as-a-Guide-to-Thinking
- http://www.physicsclassroom.com/class/momentum/Lesson-2/Momentum-Conservation-in-Explosions
- https://sciencenotes.org/conservation-of-momentum-example-problem/
- http://courses.ncssm.edu/apb11/resources/guides/Gog-1a.cons_mom_1d.htm
- https://edurev.in/studytube/Conservation-of-Momentum-Numerical-Problems/6cfo66d3-fda7-4740-b875-eoc7d03197cc_t

Elastic and Inelastic collisions

• Basically at this level:

- Elastic Collisions:
 - Bounce
- Inelastic Collisions:
 - Stick together

Plenary (Momentum of a single object):

- http://www.softschools.com/quizzes/physics/momentum/quiz1502.html
- http://www.physicslessons.com/quiz/quiz8.html
- http://www.stmary.ws/HighSchool/Physics/home/notes/dynamics/momentum/momentum_word_problems.htm
- http://www.stmary.ws/HighSchool/Physics/home/marys_java/gravity_friction_momentum/mome
- http://www.bbc.co.uk/bitesize/quiz/q95598405
- http://www.ducksters.com/science/quiz/momentum_questions.php
- https://quizizz.com/admin/quiz/58d9b234444dc406582d76a2

12/14/201

The law of momentum conservation can be stated as follows:

- For a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
 - That is, the momentum lost by object 1 is equal to the momentum gained by object 2.

 $\underline{http://www.physicsclassroom.com/class/momentum/Lesson-2/Momentum-Conservation-Principles (Conservation-Principles (Co$