

Common Misconceptions Regarding Electric Circuit http://www.physicsclassroom.com/classic/ircuits/ll.esson-2/Common-Misconceptions-Regarding-Electric-Gircuits	5/10/2018 I ts
Statement	True or False?
a. When an electrochemical cell no longer works, it is out of charge and must be recharged before it can be used again.	T or F
b. An electrochemical cell can be a source of charge in a circuit. The charge that flows through the circuit originates in the cell.	T or F
c. Charge becomes used up as it flows through a circuit. The amount of charge that exits a light bulb is less than the amount that enters the light bulb.	T or F
d. Charge flows through circuits at very high speeds. This explains why the light bulb turns on immediately after the wall switch is flipped.	T or F
e. The local electrical utility company supplies millions and millions of electrons to our homes everyday.	T or F

Common Misconceptions Regarding Electric C	
Statement	True or False?
a. When an electrochemical cell no longer works, it is out of charge and must be recharged before it can be used again.	TorF
b. An electrochemical cell can be a source of charge in a circuit. The charge that flows through the circuit originates in the cell.	TorF
c. Charge becomes used up as it flows through a circuit. The amount of charge that exits a light bulb is less than the amount that enters the light bulb.	T or F
d. Charge flows through circuits at very high speeds. This explains why the light bulb turns on immediately after the wall switch is flipped.	TorF
e. The local electrical utility company supplies millions and millions of electrons to our homes everyday.	TorF
Each of these statements is false.	37

Common Misconceptions Regarding Electric Circuits

5/10/2018

An electrochemical cell ('battery') supplies the energy needed to move a charge from a low potential location to a high potential location.

The charge that flows through a circuit originates in the wires (the electrons possessed by the atoms that make up the wires).

Charge moves abnormally slowly (~ 1 m/hour) through a circuit. But as soon as a switched is turned to ON, charge located everywhere within the circuit begins to move.

The rate at which charge flows into a light bulb = charge flows out.

An electrical appliance (e.g. light bulb) transforms electrical energy into other forms (e.g. light energy and thermal energy). Thus, the amount of electrical energy possessed by a charge as it exits an appliance is < when it entered the appliance (voltage drop).

http://www.physicsclassroom.com/class/circuits/Lesson-3/Ohm-s-Law
https://www.physicsclassroom.com/class/circuits/Lesson-3/Ohm-s-Law
https://www.allaboutcircuits.com/worksheets/ohms-law/
https://www.learnabout-electronics.org/Resistors/resistors_12.php
http://www.twothirtyvolts.org.uk/education/revision-quiz/ohms-law.html
https://quizizz.com/admin/quiz/56d5g6ad5aea7a8g5gbef885
https://www.bbc.co.uk/education/guides/z8bzpvs/ttest
https://sciencesourcez.pearsoncanada.ca/resources/hotpotato_quiz_og_11_3.htm
https://quizizz.com/admin/quiz/57015g651dofce5d7g6cf77a

