## **Review of Previous Lesson**

- State as many Vocabulary words and Learning Objectives that you remember from the last lesson as you can.
- Remember to grade yourself from 0 3.

5/11/2018

<u>Oiffraction, Refraction, Interference</u> (Standing Waves) & Resonance (Natural/Resonant Frequency)

2

|                        | Content: |   | Start | End |
|------------------------|----------|---|-------|-----|
| interference pattern   |          |   |       |     |
| constructive interfere | nce      |   |       |     |
| destructive interferen | ce       | _ |       |     |
| standing wave          |          |   |       |     |
| nodes                  |          |   |       |     |
| antinodes              |          |   |       |     |
| natural frequency      |          |   |       |     |
| resonance              |          |   |       |     |
|                        |          |   |       |     |

| L | earning Objectives                                                                             | 5/    | /11/201 |
|---|------------------------------------------------------------------------------------------------|-------|---------|
|   | Content:                                                                                       | Start | End     |
|   | Identify and explain diffraction and refraction causes, examples and applications.             |       |         |
|   | Recognise and construct interference patterns produced given two basic initial waves.          |       |         |
|   | Explain production and applications of standing waves and resonance.                           |       |         |
|   | Identify nodes and antinodes on a given wave with explanation of significance.                 |       |         |
|   | Demonstrate knowledge of relationship between standing waves, natural frequency and resonance. |       |         |
|   |                                                                                                |       |         |
|   |                                                                                                |       |         |

E/11/2010

#### **Boundary Behaviour**

- As a wave travels through a medium, it will often reach the end of the medium and encounter an obstacle or perhaps another medium through which it could travel.
- The behaviour of a wave (or pulse) upon reaching the end of a medium is referred to as **boundary behaviour**.

http://www.physicsclassroom.com/class/waves/Lesson-3/Boundary-Behavior



5/11/2018

#### **Refraction of Waves**

- Deep water = High Speed.
- Shallow water = Low Speed.
  - What do you think will happen to the waves?

#### **Refraction of Waves**

 Waves change speed and wavelength as they pass from one medium to another so will change direction/bend.



- Deep water = High Speed.
- Shallow water = Low Speed.
  - So, if water waves are passing from deep water into shallow water, they will slow down.

 $\label{lem:http://www.physicsclassroom.com/class/waves/Lesson-3/Reflection,-Refraction,-and-Diffraction} \\$ 



**Refraction Example** 



Why does a change in wave speed make the waves change direction? https://www.youtube.com/watch?v=fn3VERs6oVQ

5/11/2018

#### **Diffraction of Waves**

 What do you think would happen if waves meet an opening or barrier in their path? **Diffraction of Waves** 

 Waves change direction as they pass through an opening or around a barrier in their path.

- When the wavelength of waves is larger than:
  - A gap in a barrier they can travel through the gap/around a corner.
  - An obstacle they can travel around the obstacle.



http://www.physicsclassroom.com/class/waves/Lesson-3/Reflection,-Refraction,-and-Diffraction

11



What is Interference?

http://www.physicsclassroom.com/class/waves/Lesson-3/Interference-of-Waves

- What happens when two waves meet while they travel through the same medium?
- What effect will the meeting of the waves have upon the appearance of the medium?
- Will the two waves bounce off each other upon meeting (much like two billiard balls would) or will the two waves pass through each other?

14









## After Interference

What do you think will happen?

After Interference

After Interference

Travelling Waves (Standing Waves & Interference)

Bozeman Science
https://www.youtube.com/watch?v=eu1PC4botbM

Traveling Waves vs. Standing Waves

http://www.physicsclassroom.com/class/waves/Lesson-4/Traveling-Waves-vs-Standing-Waves

• Travelling Wave:

— When a wave is not confined to a given space along the medium (carries on 'forever').

— e.g. an ocean wave.

• Standing Wave:

— When a wave is confined to a given space and is made up of the inference between the wave travelling forward and the wave reflected from the fixed end.

— Node = point of no displacement.

— Antinode = point of maximum displacement.

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string/en.html

Resonance
https://www.youtube.com/watch?v=dihQuwrf9yQ
https://www.youtube.com/watch?v=AaenWDMPZT8
https://www.youtube.com/watch?v=X-hjeVc127I

#### Resonance

http://www.physicsclassroom.com/class/sound/Lesson-5/Resonance

 Resonance only occurs when the first object is vibrating at the natural frequency of the second object.

24

5/11/2018

## **Problems & Solutions:**

- Diffraction & Refraction:
  - http://glencoe.mheducation.com/sites/0078617766/student\_view0/chapter1\_/section3/self-check\_quiz-eng\_.html
  - https://quizizz.com/admin/quiz/58fdea1a56e1e91100ce769c
  - https://flipquiz.me/u/christiantorrez1/reflection-refraction-and-diffraction
  - http://www.ducksters.com/science/quiz/wave\_behavior\_questions.php
- · Interference:
  - http://www.physicsclassroom.com/class/waves/Lesson-3/Interference-of-Waves
  - https://quizizz.com/admin/quiz/57225c42e0ca35065e6b8c90
  - https://www.proprofs.com/quiz-school/quizshow.php?title=interferencewave&g=1

2

5/11/2018

# **Problems & Solutions:**

- Travelling & Standing Waves:
  - http://www.physicsclassroom.com/class/waves/Lesson-4/Nodes-and-Anti-nodes
- · Resonance:
  - http://www.physicsclassroom.com/class/waves/Lesson-4/Nodes-and-Anti-nodes

26

5/11/2018

#### Grade yourself.

• Grade yourself on the vocabulary and learning objectives of the presentation.

27