Pre-Comp Review Questions- 7th Grade

Section 1- Units

1. Fill in the missing SI and English Units

Measurement	SI Unit	SI Symbol	English Unit	English Symbol
Time	second			S.
Temperature		К	Fahrenheit	
Length				ft.
Volume (solid)	Cubic Meter			ft ³
Weight (Force)		N.	Pounds	
Mass	Kilogram			sl

2. Fill in the missing metric prefix and/or numerical value

Metric Prefix	Symbol	Numerical Multiplier	Exponential Multiplier (scientific notation)
Tera			10 ¹²
	G		
	M		
Kilo			
	h		
		10	10 ¹
Base Unit		1	10 ⁰
Deci	d		
			10 ⁻²
Milli			
	μ	0.000001	
	n		10 ⁻⁹
			10 ⁻¹²

- 3. Convert 643nm to cm
- 4. Convert 12kg to hg

5. Convert 7.5μC to daC	
6. Convert 25km/h to m/s	
7. Convert 343 m/s to mi/hr	
Section 2- Motion For the following words, write the definition and equation when applicable, and indicate the quantity is a vector or a scalar	if
1. Reference Point	
2. Motion	
3. Distance	
Vector or Scalar?	
Equation:	
4. Displacement	
Vector or Scalar	
Equation:	

5. Speed
Vector or Scalar
Equation:
C. Average Speed
6. Average Speed
Vector or Scalar
Equation:
7. Velocity
Vector or Scalar
Vector or Scalar
Equation:
8. Instantaneous Velocity
e. instantaneous velocity
9. Average Velocity
Equation:
10. Acceleration
Vector or Scalar
Equation:

11.	Directly Pr	орогиона	
ampl	le of 2 quai	ntities that are	directly proportional:
12.	Inversely F	Proportional	
ampl	le of 2 qua	ntities that are	inversely proportional:
13.	What are	the 3 ways an c	object can accelerate?
		_	ject will be speeding up, slowing down, or not changing as of velocity and acceleration
	Velocity	Acceleration	Speeding up/ Slowing down/ No change
	+	+	
	+	-	
	+	0	
	-	+	
	-	-	
	-	0	
16.	Problems A person h hikes back	nikes 2120 met 1640m west ir	ers east in 25mins, takes a break for lunch for half hour, and all mins. What was the person's distance, displacement age velocity for the trip (in m/s)?

18.		car moves around a circular track with a radius of 10m. The car travels at a nstant speed of 30 m/s. If the car travels ¾ of the way around the track, find the
		distance travelled
	b.	displacement
	c.	average velocity
	d.	If the car continues to drive and ends at the place it started, what will be its distance, displacement, and average velocity then?
19.		n airplane starts from rest and reaches a speed of 70 km/h in 50s before taking off nat was the airplanes average acceleration (in m/s²)?
20.		object is moving at a constant velocity of 10m/s east for 20s. What is the celeration of the object?
21.		

22. Use the graph below to answer the following questions

- a. What is the object's distance travelled between 0 and 4 sec?
- b. What is the object's displacement between 0 and 4 sec?
- c. What is the object's distance travelled between 4 and 8 sec?
- d. What is the object's displacement between 4 and 8 sec?
- e. What is the object's distance travelled between 0 and 10 sec?
- f. What is the object's displacement between 0 and 10 sec?
- g. In what time interval is the objects displacement negative: 0-3 sec, 3-5 sec, or 8-10sec?

Section 3- Forces and Newton's Laws

For the following words, write the definitions and equations when applicable

1. Force
2. Newton's 1 st law
3. Inertia

4.	Newton's 2 nd Law
Equati	on:
5.	Newton's 3 rd Law
Equati	on:
Lquati	OII.
6.	What is the statement we use to determine the action-reaction force pairs for N
	Weight
	uation:
	on Earth=
8.	Normal Force
Norma	al forces oppose
9.	Tension Force
Tensio	on Forces oppose
10	. Newton's Law of universal gravitation (NLUG) equation
F _o =	
	2 =

11. Friction Force	
Equation:	
12. Static Friction	
13. Kinetic Friction	
14. Net Force	
Equation:	
15. Conditions for Equilibrium 1 2 16. 4 steps in drawing a Free-Body Diagram a b	
c. i i d. 17. Draw a free-body diagram for 6kg object falling through the air	

18. Draw a free body diagram for a 1.5kg soccer ball rolling along a rough surface

	Draw a free body diag string.	ram for a pendulum wit	h a mass	of 60g suspended from a
20.	What are the 4 funda	mental forces in the uni	iverse? Lis	st from weakest to strongest
21.	Contact force			
Exa	mple:			
22.		rce		
Exa	mple:			
Pro	<u>blems</u>			
23.		rated by a distance of 0. avitational force betwee		person has a mass of 60kg. eople?
	b. If the distance be?	between them is halved	d, what w	ill the force between them
24.	There are 3 books sta	icked on a table as show	n.	
		Book 1 m ₁ = 1.5kg		
		Book 2 m ₂ = 1.7kg		
		Book 3 m ₃ = 2.0kg		
a.	Find the Normal Force	e acting on each book.		

b. If a person pushes down on the stack with a force of 10N, what will the normal force on book 2 be (hint- addition)?

25. A soccer ball is rolling in the grass. It has a mass of 1.65kg. The coefficient of friction between the ball and the grass is 0.8.a. Draw a free-body diagram for the soccer ball.					
b. Find the frictional force acting on the ball.					
c. Find the acceleration of the ball					
d. If the ball has an initial velocity of 10 m/s, how much time will it take for the friction force to bring the ball to a stop?					
26. What are the units of all forces?					
27. Bart is riding on his skateboard on a rough sidewalk (meaning there is friction). He is applying a force of 15N East and the force of friction acting on the skateboard is 7N west.					
a. Draw a free body force diagram for all of the forces acting on the skateboard					
b. Find the net force acting on the skateboard.					
c. If his mass and the mass of the skateboard is 55kg, find his net acceleration.					
d. Find the coefficient of friction.					

28		astronaut on the moon weighs 165N. If the action force is the weight of	
		tronaut, what is the magnitude and direction of the reaction force and wh	nat objec
		the reaction force acting on? (Hint- fill in the blanks "The force on	
		by is equal in magnitude but opposite in	
		rection of the force on by" Wha	t is
	ao	ject 1 and object 2 in this case?)	
<u>Sectio</u>	n 4-	- Work, Power, and Energy	
For the	e fo	llowing words, write the definition and include the equation when applica	able
	1.	Work	-
	Eq	uation:	
	2.	Conditions for a force to do work	
		a	_
		b	=
	3.	Fill in the blanks:	
		a. The work needed to lift an object to a given height is equal to times the	_
		h When an applied force is at apple to the direction of motion, the we	rlı dana
		 b. When an applied force is at angle to the direction of motion, the working the force 	rk done
		c. Forces that are perpendicular to the direction of motion do work.	
	4.	The units of work	
		If an object is subject to a, it may be set in	. This
		means that has been done on the object and its	
		has transferred forms. A moving object has the ability to do	
		another object.	
	6.	Power	
		Equation:	-
		Units:	
	_		
	7.	Energy-	
		Units of energy	

Forms	of E	nergy
	8.	Gravitational Potential Energy
Equati	on:	
	9.	Chemical Potential Energy
Examp	ole:	
	10.	Kinetic Energy
Equati	on:	
	11.	Thermal Energy
Proble	ms-	
	12.	An object with a mass of 53kg is lifted to a height of 4.2m. a. How much work is done to lift the object?
		b. If the object is lifted in 1.1 mins, how much power was used to lift it?
	13.	A person kicks a soccer ball with a mass of 0.8kg and gives it a velocity of 15 m/s a. What is the kinetic energy of the ball?
		 b. If the velocity of the ball is doubled, by what factor does the kinetic energy o the ball increase? (hint, you don't need to recalculate KE)
		c. If the velocity of the ball is halved, by what factor is the kinetic energy of the

ball reduced? (hint, you don't need to recalculate KE)

14.	set up by firefighters. time the person jump	a burning building into one of the inflatable rescue mats Describe the energy transformations that occur from the s to when they reach the lowest point in their motion uncing after one bounce and are at ground level)	
15.	. A battery converts	energy to	
		energy, which causes the electrons in a circuit to move and	d
	gain	energy.	
16.		.8kg is launched from ground level with a velocity of 22.4 vitational potential energy at a height of 3m.	