1D Arrays — TockenPass FRQ

AP® COMPUTER SCIENCE A
GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points can
only be deducted in a part of the question that has earned credit via the question rubric. No part
of a question (a, b, ¢) may have a negative point total. A given penalty can be assessed only once
for a question, even if it occurs multiple times, or in multiple parts of that question. A maximum of
3 penalty points may be assessed per question.

1-Point Penalty

(w) Extraneous code that causes side effect (e.g. printing to output, incorrect precondition check)
(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

Mr Lee’s 1-Point Penalty:
¢ |nefficient, “long winded” or “messy” difficult to understand code which takes longer to
write than standard more efficient solutions.
o In anexam you need to save time by writing quickly hand writable efficient code
which is easy for AP readers to understand.

No Penalty
¢ Extraneous code with no side effect (e.g., precondition check, no-op)
e Spelling/case discrepancies where there is no ambiguity*
e Local variable not declared provided other variables are declared in some part
¢ Keyword used as an identifier
¢ Common mathematical symbols used for operators (x » + < =< > #)
e [Jwvs. ()
¢ Extraneous [] when referencing entire array
e [i,7j]insteadof [1] [7]
e —instead of = and vice versa
e Missing {} where indentation clearly conveys intent
e Missing () around if or while conditions

* Spelling and case discrepancies for identifiers fall under the "No Penalty" category only if the
correction can be unambiguously inferred from context; for example, "total" instead of "totl”. As a
counterexample, that if the code declares "int G=99, g=0; ", then uses "while (G < 10} " instead of
“while { g < 10) *, the context does not aflow for the reader to assume the use of the lower-case
variable.

1D Arrays — TockenPass FRQ

A multiplayer game called Token Pass has the following rules. Each player begins with a random
number of tokens (at least 1, but no more than 10) that are placed on a linear game board. There
is one position on the game board for each player. After the game board has been filled, a player
is randomly chosen to begin the game. Each position on the board is numbered, starting with 0.

The following rules apply for a player's turn.

¢ The tokens are collected and removed from the game board at that player's position.

¢ The collected tokens are distributed one at a time, to each player, beginning with the next
player in order of increasing position.

¢ If there are still tokens to distribute after the player at the highest position gets a token, the
next token will be distributed to the player at position 0.

¢ The distribution of tokens continues until there are no more tokens to distribute.

The Token Pass game board is represented by an array of integers. The indexes of the array
represent the player positions on the game board, and the corresponding values in the array
represent the number of tokens that each player has. The following example illustrates one
player's turn.

Example

The following represents a game with 4 players. The player at position 2 was chosen to go first.

Player 0 1 2 3
Tokens | 3 2 | 6 | 10 |

The tokens at position 2 are collected and distributed as follows.

¢ 1st token - to position 3 (The highest position is reached, so the next token goes to position 0.)
¢ 2nd token - to position O

¢ 3rd token - to position 1

e 4th token - to position 2

¢ 5th token - to position 3 (The highest paosition is reached, so the next token goes to position 0.)
e 6th token - to position 0

After player 2’s turn, the values in the array will be as follows.

N —

Player 0 1
Tokens 5 3 | 1 | 12

int[] board;
int currentPlaver;

1D Arrays — TockenPass FRQ

(a) Write a code segment for the TokenPass game. The parameter playerCount represents
the number of players in the game. The code segment should create the boardarray to
contain plaverCount elements and fill the array with random numbers between 1 and 10,
inclusive. The code segment should also initialize the variable currentPlayer to arandom
number between Oand plaverCount — I,inclusive.

Complete the code segment below.

/**% Creates the board array to be of size playverCount and
* fills it with random integer values from 1 to 10,
* dnclusive. Jnitializes currentPlayer to a random integer
* value in the range between O and playverCount - 1,
* Inclusive.
* @param playverCount the number of players
L
int plaverCount

(b) Write another code segment.
The tokens are collected and removed from the game board at the current player's position.

These tokens are distributed, one at a time, to each player, beginning with the next higher
position, until there are no more tokens to distribute.

Information repeated from the beginning of the question.

int]] board;
int currentPlayer;
int playercount;

Complete the code segment below.

J**% Distributes the tokens from the current plaver'’s positicn
* one at a time to each player in the game. Distribution
begins with the next position and continues until all the
tokens have been distributed. If there are still tokens to
distribute when the player at the highest position is
reached, the next token will be distributed to the player
at position 0.
Precondition: the current player has at least one token.
Postcondition: the current plaver has not changed.

*ox A % % %%

