
 1D Arrays – Sound FRQ

 AP® COMPUTER SCIENCE A

 GENERAL SCORING GUIDELINES

 Apply the question assessment rubric first, which always takes precedence. Penalty points can

 only be deducted in a part of the question that has earned credit via the question rubric. No

 part of a question (a, b , c) may have a negative point total. A given penalty can be assessed only

 once for a question, even if it occurs multiple times, or in multiple parts of that question. A

 maximum of 3 penalty points may be assessed per question.

 1-Point Penalty

 (w) Extraneous code that causes side effect (e.g. printing to output, incorrect precondition

 check)

 (x) Local variables used but none declared

 (y) Destruction of persistent data (e.g., changing value referenced by parameter)

 Mr Lee’s 1-Point Penalty:

 ● Inefficient, “long winded” or “messy” difficult to understand code which takes longer to

 write than standard more efficient solutions.

 o In an exam you need to save time by writing quickly hand writable efficient code

 which is easy for AP readers to understand.

 No Penalty

 ● Extraneous code with no side effect (e.g., precondition check, no-op)

 ● Spelling/case discrepancies where there is no ambiguity*

 ● Local variable not declared provided other variables are declared in some part

 ● Keyword used as an identifier

 ● Common mathematical symbols used for operators (x • ÷ ≤ ≥< > ≠)

 ● [] vs. ()
 ● Extraneous [] when referencing entire array

 ● [i,j] instead of [i] [j]
 ● = instead of == and vice versa

 ● Missing {} where indentation clearly conveys intent

 ● Missing () around if or while conditions

 * Spelling and case discrepancies for identifiers fall under the "No Penalty" category only if the

 correction can be unambiguously inferred from context; for example, "total" instead of "totl". As

 a counterexample, that if the code declares "int G=99 , g=O; ", then uses "while (G < 10) "

 instead of "while (g < 10) ", the context does not allow for the reader to assume the use of the

 lower-case variable.

 1D Arrays – Sound FRQ

 Digital sounds can be represented as an array of integer values. For this question, you will write

 two unrelated code segments of the Sound class.

 /** the array of values in this sound; guaranteed to be
 * valid ints */
 int [] samples;

 (a) The volume of a sound depends on the amplitude of each value in the sound. The

 amplitude of a value is its absolute value. For example, the amplitude of -2300 is 2300 and

 the amplitude of 4000 is 4000.

 Write a code segment that will change any value that has an amplitude greater than the

 given limit. Values that are greater than limit are replaced with limit , and values that

 are less than -limit are replaced with -limit . The code segment prints the total

 number of values that were changed in the array. For example, assume that the array

 samples has been initialized with the following values.

 40 2532 17 -2300 -17 -4000 2000 1048 -420 33 15 -32 2030 3223

 When the code segment is executed the value 5 will be printed and the array samples will

 contain the following values.

 40 2000 17 -2000 -17 -2000 2000 1048 -420 33 15 -32 2000 2000

 Complete the code segment below.

 /** Changes those values in this sound that have an
 * amplitude greater than limit.
 * Values greater than limit are changed to limit.
 * Values less than -limit are changed to -limit.
 * @param limit the amplitude limit
 * Precondition: limit >= 0
 * @print the number of values in this sound that this
 * code segment changed
 */

 int limit;

 1D Arrays – Sound FRQ

 (b) Recorded sound often begins with silence. Silence in a sound is represented by a value of 0.

 Write a code segment that removes the silence from the beginning of a sound. To remove

 starting silence, a new array of values is created that contains the same values as the

 original samples array in the same order but without the leading zeros. The variable

 samples is updated to refer to the new array. For example, suppose the instance variable

 samples refers to the following array.

 Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Value 0 0 0 0 -14 0 -35 -39 0 -7 16 32 37 29 0 0

 After the code segment has been executed, the variable samples will refer to the following

 array.

 Index 0 1 2 3 4 5 6 7 8 9 10 11
 Value -14 0 -35 -39 0 -7 16 32 37 29 0 0

 Complete the code segment below.

 /** Removes all silence from the beginning of this sound.
 * Silence is represented by a value of 0.
 * Precondition: samples contains at least one nonzero value
 * Postcondition: the length of samples reflects the removal
 * of starting silence
 */

