
Design

General name Purpose

Main form
Displays the 20 snooker tables and their state of play.
Prints a report on daily usage of tables.
Allows the other 3 forms to be loaded

Game form
Input / output appropriate data when a game either starts
or finishes. Calculates the cost of a finished game.
Stores details of games on file.

Members form

Allows new members to be added and others to be
deleted.
Displays full list of members.
Prints a membership report.

Utilities form
Creates lost or missing files.
Backs up files.
Changes price of snooker game.

Main form
Sketch of the design of the main form.

Game form
Depending on which radio button is clicked, Start Game or Finish Game, a different set
of controls is made visible. When the form first loads, by clicking the Game button on the
Main form, the controls for starting a game will be visible.

Starting a game
The following will happen:

• The receptionist enters the person's membership number.
• The member's name and their category of membership will automatically appear.

The receptionist confirms these details with the player.
• The combo box will display the numbers of all those tables which are available

for play. When the receptionist selects a table number the current time is taken
from the system clock and displayed in the Start Time control. The receptionist
will confirm with the member the starting time of the game for payment
calculations.

• Clicking the Start Game button stores details of the game on a file and clears all
the text boxes. It also changes the table's colour from green to red on the Main
form and displays the starting time next to it.

Finishing a game
The following will happen:

• The receptionist will ask the player which table they have been using and selects
this from the tables currently in use that are displayed in the combo box.

• Selecting a table number triggers the display of data in all the other controls.
• The finishing time of the game is taken from the system clock and the playing

time and cost of the game calculated automatically.
• Clicking the Finish Game button stores details of the completed game on file and

clears all the text boxes. It also changes the table's colour back to green and
removes the start time next to it on the Main form.

Members form

Depending on which radio button is clicked, Add Member or Delete Member, a different
set of controls is made visible. When the form first loads, the controls for adding a
member will be available.

Adding a member
The receptionist enters a new membership number, the member's name and category of
membership and then clicks the Add Member button. The details are added to a file.

Deleting a member
The receptionist enters a membership number and clicks the Delete Member button. The
member is deleted from a file.

 The list box displays details of each member. These details can be printed out.

Utilities form
The controls for entering new payment rates for a game are only made visible if the user
clicks the appropriate radio button.

Printed reports
My analysis found that Smiley's wants two printed reports:

• At any time during the day, but most likely at the end of the day, a report showing
the usage of each table. This includes the total length of time the table has been in
use, how many games were played on the table and how much income the table
made. The overall income for the day is also required.

• An alphabetical list of members showing their name and category of membership,
the total number of senior and junior members and the overall total.

.

Files
Four files are needed for Smiley's Snooker. Three of these will store records and
therefore be random access files (for which I'll use a '.dat' extension in the file name) and
one is a text file (' .txt' extension).

CurrentGames.dat
Stores details of the status of each table (in use or not) and the membership number of the
player responsible for the game. Note that the data in this file could be stored only in
RAM, but if the user accidentally closed the program these details would be lost.

FinishedGames.dat
Stores details of games that have finished. It will be used for printing the report Smiley's
wants on table usage. Smiley's does not require any details about which members used
the tables in this report so these can be omitted. I do need to store details of the length of
each game because the report only needs to show the total amount of time each table has
been used. Because there are different rates for seniors and juniors I must either store the
cost of the game or the membership category of the member in charge of the game. I have
decided to store the cost.

Costs.txt
Stores the senior and junior rates as pence per minute.

Members.dat
Stores details of each member - membership number, name and category of membership.
As explained below it also has a flagged field to indicate if the member has been deleted.

CurrentGames.dat file
External file name CurrentGames.dat General name Current Games
Description Stores details of the current status of each table - if in use details of the

game
Used for Colouring the tables on the Main form green or red when the form loads

Retrieving details of game when processing: a finished game
Organisation Random access
Processing File is created with all records initialised to appropriate values. TableID

values correspond to record numbers and are used for direct access
Record structure

Field name Field description Data type (and length) No. bytes
TableD Table number (1 to 20) Short 2
MemberID Membership ID (2 letters + 4

numeric digits)
String(6) 6

StartTime If table has a game, time
game started

Date 8

Occupied Whether a table has a game.
Stores Y or N

Char 2

Record size 18 bytes
Typical size of file File always has 20 records (1 per table) – size is 360 bytes

FinishedGames.dat file
 External file name FinishedGames.dat General name Finished Games
 Description Stores details of all completed games for the current day
 Used for Producing: the printed report on daily table usage
 Organisation Random access

 Processing New records appended. No deletions / changes to data required.
 Linear searching of file to produce printed report on daily table usage.

Record structure
 Field name Field description Data type (and length) No. bytes
 TableID Table number (1 to 20) Short 2
 StartTime Time game started Date 8
 FinishTime Time game finished Date 8
 Cost Cost of game Decimal 16
 Record size 34 bytes

 Typical size of file
1 record for each completed game. Assuming all tables are used all
day (12 hours) and that a game averages 1 hour, 12 x 20 records
stored - maximum total size 8160 bytes

Costs.txt file
External file name Costs.txt General name Costs
Description Stores the senior and junior rates per minute for a game.
Used for Calculating cost of a finished game
Organisation Text file
Structure of data Only 1 line containing the two rates (e.g. 4, 3.5 etc)
Typical size of file A few bytes

Members.dat file
The only things Smiley's needs to store about a member is their membership number,
name and category of membership.

To delete a member I will flag one of its fields to indicate the record has been deleted.
The record will still be there physically.

This means that I need a field to flag whether the record has been deleted. It will hold a
single character Y or N.
.
To add a new record to the Members file I will overwrite the first record that has been
flagged as deleted.

External file name Members.dat General name Members
Description Stores details of all current members

Used for

Displaying data on Game form when a new game starts or a game
finishes.
Displaying list of members in Members form
Producing printed list of members

Organisation Random access

Processing
Records are logically deleted. Linear search made to find first logically
deleted record when adding a new member - if none found record is
appended.

Record structure

Field name Field description Data type (and
length) No. bytes

MemberID Membership ID (2 letters + 4 numeric
digits) String (6) 6

Surname Member's surname String (15) 15
Firstname Member's firstname String (15) 15

Category Category of membership - S (senior)
or J (Junior) Char 2

Deleted Has this member been deleted? Stores
Y or N Char 2

Record size 40 bytes
Typical size of file 1 record for each member. With 400 members = 16,000 bytes

Data validation
Data input by the user may not be entered correctly. Any check to ensure that it is
acceptable is called data validation.

As I have no Visual Basic names for the controls yet, the identifiers below refer to those
shown in the form design sketches earlier.

Control Form Validation Check

Membership No,
(Adding a member) Members

• Length 6 characters
• Not already used for another member.

This means that the MemberID field in
the Members.dat file is a primary key
field (i.e. a field that cannot contain
duplicate values)

 Membership No.
 (Deleting a member) Members • Must not be blank

 Surname Members • Must not be blank
 First name Members • Must not be blank

Membership Category Members
(list box) • Must be Senior or Junior

Senior (rate per game) Utilities • Must be a number
Junior (rate per game) Utilities • Must be a number

 Membership No.
 (start a game) Game

• Must not be blank
• Membership number must exist (on

Members file). This is a file lookup check,
and since the membership number will be
stored on the Finished Games file, it is
also an example of referential integrity.

 Table No.
 (start a game)

Game
 (combo box)

• Must be the number of a table available
for play.

• A value must be selected from the combo
box

 Table No.
(finish a game)

 Game
 (combo box)

• Must be the number of a table
currently in use

• A value must be selected from
the combo box

Entering the membership number of a new member lends itself to further validation.
Since membership numbers consist of two characters followed by four digits I could
check for this.
Visual Basic makes validating some data very easy by the use of list or combo boxes. In
the three validation checks listed above that involve these controls, the user is forced to
select a correct item of data. However I could still check that they have made a selection
in the first place.

Maintenance: Modular Structure
Event procedures
Event Control Processing
 Main form - buttons
 Click Close Closes program
 Click Game Displays/loads Game form
 Click Membership Displays/loads Members form
 Click Utilities Displays/loads Utilities form

 Click Table Usage Report
• Prints report on table usage
• Deletes Finished Games file (if user

requests this)
 Main form - other

 Load
 n/a

Colour tables red or green according to
whether or not they are in use, and displays
starting time of game next to red ones.

 Game form - Starting a game

 Load • Populates combo box (tables available for
play)

 Checked
 Changed

Start radio button

Makes input controls for finishing a game
invisible. Makes those for starting a game
visible
Changes text of button to 'Start Game'

 Leave

Membership No. text
box

• Displays member's name and category of
membership

 SelectedIndex
 Changed Combo box

• Converts starting time of game to
hours/minutes only

 Displays this starting time

 Click

Start Game button

• Stores record of game in Current Games
file

• Changes table's colour to red and displays
starting time next to it on the Main form

• Populates combo box (with available table
numbers)

 Game .form - Finishing a game

 Checked
 Changed Finish radio button

Makes input controls for starting a game
invisible. Makes those for finishing a game
visible.
Changes text of button to 'Finish Game'
• Populates combo box (with occupied

table numbers)

 Selectedlndex
 Changed Combo box

• Retrieves record of game from Current
Games file

• Retrieves player's details from Members
file

• Calculates playing time in hours and
minutes

• Calculates cost of game
• Converts starting and finishing times of

game to hours/minutes
• Displays start and finish time and cost of

completed game

 Click Finish Game button

• Retrieves details of game from Current
Games file

• Updates record of finished table in
Current Games file (sets

• Occupied field to 'N')
• Changes colour of table to green and

removes starting time
• Stores record of finished game in Finished

Games file
• Populates combo box (with occupied table

numbers)
 Members-form - Adding a member

 Checked
 Changed Add radio button

Makes input control for deleting a member
invisible. Makes controls for adding a
member visible
Changes text of button to 'Add Member'

 Click
 Add Member button

• Checks that membership number has not
been used before

• Stores new member's details in Members
file

 Members form - Deleting a member

 Checked
 Changed Delete radio button

Makes input controls for adding a member
invisible. Makes control for deleting a
member visible
Changes text of button to 'Delete Member'

 Click
 Delete Member button • Deletes member from Members file

 Members form - other buttons

 Click Display Members Displays details of all current members in
list box

 Click Print Membership
List Prints report on current membership

 Utilities form

 Checked
 Changed

Change Price of
Game radio button

Displays controls for entering new senior
and junior rates

 Click OK button

• Backs up Current Games and Finished
Games files

• Backs up Members file
• Creates Current Games file
• Stores new rates in Costs file

Game form's Load event, Finish radio button CheckedChanged event and Start /
Finish Game button's Click event
Because the controls for starting a game will be visible when the form loads, the Load
event should list the free tables in the combo box. When the user clicks the radio button
for finishing a game the occupied tables should be listed. Both these tasks are similar and
can be done by the same general procedure. No parameters are needed and nothing is
returned so it can be a Sub procedure. I will name it ListTables.
Name ListTables
Type Sub Procedure
Parameters / ReturnValue None

Called from
Load event, Finish radio button CheckedChanged event
and StartlFinish Game button's
Click event on the Game form.

 Purpose

If starting a game, populates the 'start' combo box with
table numbers that are free. If finishing a game,
populates the 'finish' combo box with table numbers that
are occupied.

Leave event of Membership No. text box

This event is triggered when the user leaves the text box to select a table from the combo
box. The Leave event of the membership number text box (for starting a game) should
display the name and category of membership of the player whose membership number
has just been entered. As it is possible that the membership number does not exist, I could
consider breaking the task into two sub tasks, each in its own procedure:

• check to see if the membership number exists
• retrieve the record from the Members file

The second sub-task will only be done if the first sub-task reports that the number does
exist. Since the 'parent' Leave event calls these procedures, the question is how the first
sub-task reports back that the membership number exists or not. A function is an
appropriate type of procedure and a Boolean return value looks promising. But if the
number does exist, the next sub-task needs to know which record number in the file to go
to. It could search the file for the membership number, but this has already been done by
the first sub-task. A good solution is to make the return value of the first sub-task the
record number in the file if the membership number is there, and another integer value if
the number does not exist. A value of 0 will do (since record numbers begin at 1).
The diagram below uses a module structure chart to show the modular structure of this
part of the program. An arrow going into a general procedure represents a value
parameter and a return arrow represents a reference parameter (for a Sub procedure) or a
return value (for a Function procedure).

Selecting from the combo box (starting a game) to display start time
The start time of a game is taken from the system clock and this includes seconds as well
as hours and minutes. The receptionist does not need the seconds part displayed so I will
have a function, ShortenTime, that is sent a time and returns only the hours and minutes
part. Note that other events also call it, and that an identifier for the parameter, FullTime,
has been used to make the description of the purpose easier to write.

Name ShortenTime
Type Function

Parameters/ReturnValue String value parameter (FullTime) - a time
Returns String

Called from
Combo box SelectedIndexChanged event (both for starting
and finishing a game)
Main form's Load event

Purpose Strips off the seconds Dart of FullTime and returns the
hours and minutes Dart

Selecting from the combo box for finishing a game
Each of the five bulleted tasks for the SelectedIndexChanged event procedure can be put
into a general procedure. The last one, to convert the starting and finishing times to hours
and minutes only, has already been designed - Shorten Time above.
Each of the general procedures can be written as a function since they all return one item
of data. The first function, to retrieve a particular table's details from the Current Games
file, needs to be passed the table number. The second function, to retrieve a particular
member's details from the Members file, needs to be passed a membership number.
Function NumberOfMinutes needs to be passed the start and finish times of a game in
order to calculate how many minutes the game took. Finally, to calculate the cost of a
game requires the number of minutes it took (which has just been returned from
NumberOfMinutes) and the category of membership.

Clicking the Start Game button for a new game
There are three tasks that must be done when processing a new game:

• store details of the new game in the Current Games file
• change the table's colour to red and display the starting time repopulate the combo

box so that the newly-used table is not listed

No data needs to be returned to the calling event procedure and so Sub procedures are
used. ListTables does not need to be passed any parameters and so the line connecting it
to its parent event procedure does not have an arrow. Note that UpdateTableDisplay in
turn needs to call ShortenTime. This is so it can display the start time of the new game on
the Main form.

Clicking the Finish Game button for a finished game
Five tasks that must be done when the user clicks the button to process a finished game:
• retrieve details of the game that has finished from the Current Games file
• update the record of this table in the Current Games file so that its Occupied field

stores 'N' .
• change the colour of the table to green and remove the starting time
• store details of the finished game in the Finished Games file
• repopulate the combo box with tables that are in use
I have already designed procedures to handle the first and third tasks. Since
ResetGamelnCurrentGamesFile simply overwrites the occupied field with 'N', it only
needs the table number. Procedure StoreGameInFinishedGamesFile needs the table
number and the start time. The start time will have been retrieved in the record returned
from GetRecordFromCurrentGamesFile.

Clicking the button to add or delete a member
The modular structure for this part of the system is less complex than for processing a
game and I can put everything into one modular structure chart. When adding a member I
need to check that the new membership number does not already exist (unlikely but
possible). This task is assigned to the function CheckDuplicateMemberID. It returns a
Boolean value to indicate whether or not the membership number already exists.

Procedure AddMember actually writes the new record to the Members file, but recall that
I decided to find the first logically deleted member (the Deleted field contains 'Y') and
overwrite this record with the new one. The task of locating this deleted member is
assigned to function FindDeletedMember. If there is a deleted one it returns the record
number; if there isn't one it returns O. It is the job of AddMember to handle the 0 if this is
returned.

Only one general procedure, DeleteMember, is used to process a deleted member. It is
passed a membership number and searches the Members file for this number. If it finds
the number it logically deletes the member and returns True. If it doesn't find the number
the return value is False, and no changes are made to the file. Note that I could have had a
separate function to check if the membership number exists in the file and given
DeleteMember the single task of deleting the appropriate record. Instead I have packed
two closely related tasks into DeleteMember.

