Scheduling Exam Questions Mark Scheme
1. (a) Maximise the use of the computer system

Be fair to all users

Provide a reasonable response time to all users

Prevent system failure due to overloading

Provide consistency to users

(1 per point, max 3) 

(3)

(b) First come/first served

First to enter ready Q is first to enter running state

Favours long jobs

Shortest job first

Jobs in ready Q are in order, shortest job first

Means that jobs are seen to be completed but favours shorter jobs

Round Robin

Each job given time slice

When time slice over, job goes to back of ready Q

Shortest remaining time

The job that requires the least job to complete is done first

Long jobs may never be started

Multi-level feedback queues

Queues with different priorities

Jobs can change Q dependent on amount of time already given

(2 per type, max 2 types, max 4) 
(4)

(c) (Each job given separate priority according to:)

importance of job/type of job

amount of time already waited

size of job

amount of peripheral time

(I/O job high priority)

Amount of processor time already given

Necessary response time

(1 per point, max 5) 
(5)
2. (a) -a number of jobs will want to be run at the same time

-processor can only run one job at a time

-in order that the jobs are treated ‘fairly’

-the operating system has to have rules to determine the order of execution/make maximum use of resources

(1 per –, max 2)

(2)

(b) -order of jobs according to list of priorities

-each job allocated priority according to…

-importance/time already spent on job/need for peripheral devices

-jobs can be in any of three states: ready, running or blocked

-Ready Q contains list of jobs waiting for processing in the order in which they should be processed

-HLS handles ready Q and loads jobs

-MLS handles the swapping of data between memory and storage

-LLS moves jobs in and out of running state

-pre-emptive scheduler has control over what is in running state, non-pre-emptive simply follows the Q

(1 per -, max 5) 
(5)
3. - Processor can only process one job at a time

- Two types of job, I/O bound and processor bound

- I/O must have priority in order to

- allow peripherals to operate while processor bound job is processed

(1 per -, max 3)

(3)

4. (a) -I/O jobs are those that require relatively little processing but do need to use 
the peripheral devices substantially

-Processor bound jobs require a large amount of processor time and very little use of the various peripheral devices.

(b) -I/O jobs are given the highest priority…

-in order to keep the peripherals working as much as possible…
-and because they would be blocked and ‘never see’ the processor if the others had priority.

(4)
5. -Each job is given a set amount of processor time.

-At the end of the time available for a job, it is interrupted.

-The operating system inspects the queue of jobs still to be processed and

-if it is not empty allocates the next amount of processor time to the job first in the queue.

-The previous job goes to the end of the queue.

-Use of priorities to determine place in the queue.

-Need for priorities to change according to amount of recent processing time they have had.

(3)
6. -I/O interrupt like the printer running out of data to print and wanting the buffer refilling.

-Timer interrupt where the processor is being forced to move onto some other task.

-Program interrupt where the processor is being stopped from carrying out an illegal operation that has been specified in the program code.

-Hardware interrupt the most serious of which is power failure.

- The order is from the bottom up. The most serious is power failure because no other tasks can be carried out if there is no power, so the safe powering down of the system must be paramount.

-Contrast that with the printer wanting more data before it can print any more out. Does it really matter if the printer has to wait a few more seconds?

(5)
Notes: There are far more points to take into account about interrupts. How does the processor decide which of a number of interrupts is the most important? Or is the interrupt more important than the work it was doing anyway? An interrupt is simply a signal, it is not a piece of program code, so how does the processor know what to do?
